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In this study we consider the familiar mathematical hydrodynamics problem of determining the motion of two 

immiscible viscous liquids, with surface tension at their interface. In the classical formulation the existence of surface tension 

means that the condition [1-3] 

[P < n > ]=c rkn ,  

is satisfied at the interface I'; here, P is the stress tensor; n is the vector of the normal to 17; k is the average curvature of the 

surface 17; a is a constant; and [.] denotes a jump in the function as it passes through r .  

The solvability of the given problem has been proved only "in the small," i.e., either for a fairly small interval of time 

or in the neighborhood of the exact solution. In view of this, the use of the classical formulation in numerical simulation can 

lead to misunderstandings. It makes sense to look for formulations that would be close to the classical from the mechanical, 

and possibly the mathematical, point of view and would admit a solution "as a whole." This is the goal of  our study. 

The model proposed takes into account the interdiffusion of the liquids as well as the effect of the surface tension, even 

though the interface "becomes softer." 
1. Derivation of the model. Suppose that a volume ~ contains two incompressible liquids. For simplicity we set the 

density of both liquids equal to unity. The distribution of the components of the mixture in the volume will be def'med by giving 

their concentrations. Suppose that ~o is the concentration of one of the liquids. Following [4, 5], we define the free-energy 

density as 

: = :(T,~,v~,) = ~r,~) + -~IV~,I ~. (1.1) 

Here T is the temperature; w(T, ~) is the free-energy density of a homogeneous liquid; and ~ is a positive constant. 

We assume that the process is isothermal and so T acts as a parameter. Nevertheless, it is important to choose a value 

of T. The point is that in real solutions w is a convex function in ~, if the temperature is higher than a critical value T c. If 

T < T e part of the function is nonconvex [5-7]. The diffusion coefficient is negative for concentrations from that part and so- 

called ascending diffusion occurs, with the components of the mixture tending to separate. 

The term ~/2lv~ol 2 introduces a surface tension of sorts into the system. Suppose that a particle of  liquid occupies 

a region V 1 = {0 _< x k _< 1, k = 1, 2, 3} and that the concentration ~p depends only on x 1, i.e., the vector V,p is directed 

along the x~ axis. We stretch the particle twofold along the x~ axis, keeping its volume constant. Suppose that 

-- f f f = 1,2) 
I," i 

is the free energy of the liquid before and after deformation and V 2 = {0 _< x I <_ 1/2, 0 <_ x 2 <__ 2, 0 <_ x 3 <_ I} is the 

region occupied by the liquid after deformation. Then 

2 I/2 1 
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Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 6, pp. 85-92, November- 

December, 1994. Original article submitted October 1, 1993; revised version submitted January 11, 1994. 

0021-8944/94/3506-0891512.50 01995 Plenum Publishing Corporation 891 



2 l,2 l 

F, = (e(Y)) + ~" I Vy~a [ 2 dyldy:dy 3. 

We see that F2 > Fl, i.e., the free energy increases as the particle is stretched along the concentration isolines and the 

system should "resist" this. 

Let us proceed to describe the model. Within the framework of the one-velocity treatment r should satisfy the equation 

alo + v �9 V~ = divj, (1.2) 
at 

where v is the velocity of  the macroscopic motion of the liquid; and j is the vector of the diffusion flow. According to the 

Cahn-Hil lar  theory [5-7], the diffusion flow is proportional to the gradient of the generalized chemical potential 0, 

j =/~V0, (1.3) 

which in turn is a functional derivative of the free energy: 

0 = - a A f  + w'(~o) (1.4) 

(the prime denotes the derivative with respect to the argument). 

The incompressibility condition for the liquid presumes that 

diw = 0. (1.5) 

Finally, the momentum equation is written in the standard way: 

Ov 
+ (v �9 V)v = divP + g. (1.6) 

at 

Here g is the vector of the external mass force. 

The form of the stress tensor still has to be taken into account. We do this by the virtual power method. First we 

assume that there are no viscous forces. Suppose that ~ is an arbitrary volume of the liquid, u(x) is a vector field in ~ (field 

of virtual velocity) such that div u = 0, ula ~ = 0. Then for rather small t > 0 the mapping ht(x) = x + tu(x) gives an 

internal strain of a liquid particle o~. The power of the stresses causing that strain, at t = 0, can be calculated in two ways: 

N(u) = -j 'eo:O(u)dx 

Dq(u) 
= axe)); (Po is stress tensor without viscosity, D(u)is the strain-rate tensor with the components 1 ( ~  + 

g(u)  = d f  (~r + ~" iV(~'(h,(x)))lbdxl,.o 

=. f(, , 'O,)v~, �9 - + ,~v~, �9 v (v~  �9 u))ax = f~(v~, | %,):i)(u)dx. 

Since the function u is arbitrary, when we equate the two expressions for the power we obtain 

divP 0 = div(-a(V~o | V~o) + S) 

(S is an arbitrary spherical tensor, which arises because div u = 0). It is convenient to take S = - p l  + a]Vr where I 

is a unit tensor and p is the pressure. Since only the divergence of  the stress tensor appears in Eq. (1.6), we can assume that 

eo = - a ( v ~  | v~,) + s. 
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Adding the viscous stress to P0, we obtain 

e = - p t  + 2aD(, , )  + a(lv~ol2, '  - v~, | v~,) (1.7) 

(/~ is the viscosity). 

The last term in (1.7) is the operator of projection onto the tangential plane to the surface of the level of the function 

9. This term is responsible for the surface tension. 

Equations (1.2)-(1.7) form a closed model. As for the function w, ks dependence on ~ is determined by the properties 

of the specific medium chosen. It is convenient to assume henceforth that ~ is not the concentration but a phase function, which 

depends linearly on the concentration and is equal to - 1 if the concentration is zero and 1 if the concentration is equal to I. 

The form of the equations does not change. We consider the system at a below-critical temperature, i .e.,  when w(~o) is a 

nonconvex function. The motivation for this choice is given below. For def'imteness we assume that 

w(~O) = y - l l4 / (cp)  ---- y- l (~02 --  I )  2, 
(1.8) 

where 3' is a constant that characterizes the miscibility of the two liquids. If the free energy F of the liquid in the volume fA 

is limited by the constant C, then 

• ~ c. 
f l  

Hence it follows that the measure of the set D k = {x E Q:W(~,(x)) > k} is evaluated as 

mesD k ~< C y / k  

for any constant k > 0. We see that mes Dk-" 0 as 3, --, 0, i.e., the measure of the set where [,p[ # 1 tends to zero as 3' "" 

0. For near-zero values of 3", therefore, the liquids virtually do not mix. Accordingly, since we want to construct a model that 

gives an approximate description of the motion of immiscible liquids, the choice of the function w in the form (1.8) is justified. 

Remark .  Generally speaking, W is defined only on the segment [ -  1, 1].It can be assumed to be equal to + oo outside 

that segment. This complicates matters somewhat because of the differentiation of  the function. We assume that W has the form 

(1.8) on the entire number axis. This is not a very big assumption if 3' is sufficiently small. 

Models similar to the one proposed here have already been studied for describing pure diffusion without transfer [7] 

and for describing phase transitions [8-11]. 

2. Let us carry out a formal asymptotic analysis of the proposed model. We write the system (1.2)-(1.8) in dimen- 

sionless variables. Characteristic scales of length and velocity, l and V, are assumed to exist in the motion under study. We 

introduce new independent variables 

x' = /-'ix, t' = 1 - 1 V t  

and new unknown functions 

v' = V-%,  p' = l(Vl ,)- lp,  O' = I(VI~)-10. 

Then the equations become 

Re ~ + (v' �9 V')v' = - V ' p '  + A'v' + Adiv ( lVwI2 l  - V~ | V~o) + g, 

d iw '  = 0, ~-- + (v' �9 V')~o = BA'O', 
at '  

-AA'~o + C-1W'(~o) - 0' = O, 
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where Re  =_ V~u-l; A = c t ( lV l~ ) - l ;  B = f l / t l - t ;  C = y V p 1 - 1 .  

Suppose that e is a positive small parameter.  Setting Re = 1, A = B = e, C = ce (c is a constant), we rewrite the 

system as 
0v 
- -  + (v �9 V)v = divT + ediv(lVg, 12I - V~o | V~o) + g, 
ot 

T = - p I +  2D, d i w  = 0, 09 + v �9 V 9, = cA0, 
0t (2.1) 

C 
- ~ A , p  + 7w, (~ , )  - o = 0. 

We assume that a solution of  this problem exists and that all functions that form that solution are differentiable the 

required number of  times. 

Let  us consider the case of  two spatial variables, since the dimensionality is of  no particular consequence.  

We define the curve  I ~ (t) = {(x, y):~(x,  y, t) = O} (x, y are the Cartesian coordinates in the plane). We  assume that 

F(t) is sufficiently smooth. In the neighborhood of  the curve F(t) we can define the function 

r(x,y,t) = s i g n d i s t ( ( x , y ) , F ( t ) ) ,  

i .e. ,  r is the distance f rom a point to F(t), taken with the minus sign on one sign of  F and a plus sign on the other side. Then 

I Vr I = I,  Ar  = k (k is the mean  curvature of  the level line of  the function r). 

We represent all of  the functions in the model  as power-series  expansions of  e, using different expansion inside and 

outside a neighborhood of  the curve F(t) and then glue them together. 

The external expansions have the form 

~o(x ,y , t , e )  = ~Oo(X,y,t ) + t~o l ( x , y , t  ) + e 2 . . . .  

O ( x , y , t , e )  = Oo(x ,y , t  ) + e O t ( x , y , t  ) + r . . . .  

v ( x , y , t , e )  = vo(x,y,t ) + e v l ( x , y , t  ) + e ~ . . . .  (2.2) 

r(x,y,t,e) = T o ( x , y , t  ) + e T l ( x , y , t  ) + e 2 . . . .  

p ( x , y , t , e )  = po (x , y , t )  + e p l ( x , y , t  ) + e2 . . .  

The internal expansions. Into the neighborhood of  F(t) we introduce the local coordinates (r, s), where  s is the arc 

length measured along F(t) f rom a fixed point. We  stretch this neighborhood, replacing r with a new coordinate p = r/e.  Then 

~,(x,y,t,e) 
O( x , y , t , e  ) 

v ( x , y , t , e )  

T ( x , y , t , e )  

p ( x , y , t , e )  

Substituting the expansions (2.2) into the 

= eO(,o,s,t ,e) = 0 o + e O  1 + e 2 . . . .  

= Z ( p , s , t , e )  = E o + eZ l + e 2 . . . .  

= V ( p , s , t , e )  = V o + eV l + e 2 . . . .  

= A ( p , s , t , e )  = A o + eA 1 + e 2 . . . .  

= q J ( p , s , t , e )  = q l  + eqJ + e2. . .  

system (2.1) and separating the terms of  order  O(1), we obtain 

- - +  v o = 0; 0t " V~~176 

w'(~Oo) = 0; 

Ov o 
+ (v o �9 V)v 0 = divT o + g; 

Ot 

d i w  n = 0; 

(2.3) 

( 2 . 4 a )  

(2.4b) 

(2.4c) 

(2.4d) 

T o =  - p o / +  2D o. (2.4e) 
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Here 

It follows from (2.4b) that ~Po can assume the values ___ 1 and 0. But r ~ 0 since if '#0 = 0 at some point, then that 

point belongs to F(t) and the expansions (2.2) were calculated outside the neighborhood of F(t). 

Let us now consider the internal expansions. We write (2.1) in the neighborhood of F(t) in local coordinates: 

ev ,  + v ( ~  + v �9 w )  + eV(s, + v �9 Vs)  

= A V r  + e A V s  - ~ d i v ( V r  | Vr) 

- e % r  div(Vr @ Vs + Vs | Vr) - (r162 Vs 

- e(cbar - e2q~,~div(Vs | Vs) 

' ~ ( r  - * ( r  + 

+ ~('P~LlVsl:V, + (r  + eg; 

(2.5) 

e2dp, + e % ( r  t + Y �9 Vr) + e2rYP(St + V �9 Vs)  = _pp "~ + t~.~pVr + e2lVsl2-.ss + eZAs'~s; (2.6) 

(2.7) 

c A  = - e W I  + 2(Vp |  V r |  + 2e(V |  + V s |  (2.8) 

We denote u = r t, n = Vr, r = Vs, and k = Ar and expand those functions in power series of r, 

u( r , s )  = % ( s )  + e u , ( s ) p  + e'  . . . .  

n(r,s) = no(s ) + en,(s)p + e ~ .. . .  

r(r,s) = ro(s ) + ~q(s)p + e 2 .... 

k ( r , s )  = ~o(S) + ek~(s)p + A . .  

(uo, no,ko are the velocity in the direction of the normal, the normal, and the average curvature of  the surface r = 0). 

We substitute the expansions (2.3) and (2.9) into Eqs. (2.5)-(2.8) and retain terms of order O(1): 

(2.9) 

Vop(u o + V o �9 no) = Aop �9 no - a,~kono - ( r  + (a ,L)~o;  

-- = 0; ~0Op 

(2.10) 

r - c W ' ( r  = 0; (2.11) 

V ~ |  o +  n o |  = 0. 

Here we have taken into account the fact that div(Vr | Vr) = ArVr, since [Vr I = 1. 

From (2.12) it follows that 

(2.12) 

v~, = O. (2.13) 

Now we use the condition for gluing the asymptotic expansions: 

(2.14a) 
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Aol, = , | = To(F _~ ); (2.14b) 

Vol p . = = = vo(F �9 ) (2.14c) 

[f(I'+) denotes the trace of the function f on the surface r to the left and right]. From (2.4b) and (2.14a) we can conclude that 

q'0[~= == = + 1. (2.15) 

Solving Eq. (2.11) with the conditions at infinity (2.15), we obtain 

q~0 = thC~ 2"/-~c) �9 (2.16) 

Moreover, we find that ~o does not depend on s; this circumstance, along with (2.10) and (2.13), gives 

Aqon ~ _ q~2tckono = 0. 

Integrating this equation with respect to p for - co to + co, we obtain 

where 

(Aol .  = , .  = - A o l p .  _ ..)no = ~kono, 

= 

Using (2.14b), from the last equation we have 

(To(r*) - To(r-))no = crkono" (2.17) 

Here a is the surface tension. It depends on the properties of the specific medium taken (in our case, on the form of the 

function w). 

According to (2.13), V o does not depend on p and so 

v0l p - + |  p = _ = = 0 ,  

and, as follows from (2.14c), 

vo(r'§ - v0(r'_) = o. (2.18) 

At the interface I" the system of equations (2.4), along with the conditions (2.17) and (2.18), gives the classical 

formulation of  the problem of the motion of two immiscible liquids, separated by a surface having surface tension. 

Our asymptotic analysis shows that the classical formulation of the problem is a zeroth approximation of  the model 

(2.1). The discussions of  this point are in no way rigorous, but they do give reason to hope that the model (2.1) can be used 

with sufficient accuracy in practical problems. 
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